- Beranda
- Komunitas
- Entertainment
- The Lounge
Teori Terraforming, Mengubah Habitat Planet Lain Agar Dapat Didiami Manusia!


TS
wahyudit
Teori Terraforming, Mengubah Habitat Planet Lain Agar Dapat Didiami Manusia!





Quote:

Quote:
Quote:
INTRO
Spoiler for :

Buat agan agan pecinta fiksi ilmiah, pasti sudah nggak asing lagi ama istilah “terraforming” yakni teori mengubah habitat planet lain agar dapat didiami manusia. Terrafoming barulah teori, sebab untuk melaksanakannya dibutuhkan biaya dan tenaga yang luar biasa besar. Namun terraforming bukanlah hal yang mustahil untuk dilakukan manusia, apalagi dengan kemajuan teknologi di masa depan. Hanya karena manusia belum “kepepet” aja untuk menciptakan habitat baru, maka ide terraforming belum benar2 dipikirkan secara serius dan hanya terbatas di film2 aja. Namun apabila habitat di Bumi benar2 sudah rusak, mungkin terraforming dan kolonisasi planet lain menjadi satu2nya pilihan agar manusia dapat bertahan hidup.
Terraforming mencakup beberapa langkah, yakni menyesuaikan suhu agar bisa didiami manusia (beberapa planet terlalu panas atau terlalu dingin), menyediakan atmosfer agar manusia bisa bernapas, serta menyediakan air agar kehidupan bisa berkembang di dalamnya. Ada beberapa objek di tata surya kita yang dipertimbangkan dapat di-terraforming untuk memenuhi kebutuhan manusia. Sejauh ini ada 7 objek yang memungkinkan exodus manusia besar2an dari Bumi, yakni Mars, Ceres, Venus, Merkuri, Europa, Callisto, dan Bulan kita sendiri.
Ini dia bahasannya
Pasti agan agan bakal puyeng kan bacanya ? sama gan
ane sendiri pun juga puyeng

Quote:
Quote:
1. MARS
Spoiler for :

Quote:
Mars memang menarik perhatian manusia sejak dulu. Lokasinya yang masih berada di dalam “habitable zone” dan cukup dekat dengan Bumi (walaupun perjalanan ke sana memakan waktu 3 tahun), membuat planet ini menjadi target sempurna terraforming dan kolonisasi manusia. Tanah dan atmosfer Mars juga mengandung zat2 yang penting bagi kehidupan, yakni sulfur, nitrogen, hidrogen, oksigen, fosfor, dan karbon. Tak hanya itu. Menurut sejarah, Mars pernah memiliki kondisi serupa dengan bumi, yakni memiliki atmosfer dan air yang melimpah. Namun lautan di Mars menghilang milyaran tahun yang lalu.
Lalu bagaimana mengisi daratan kering di Mars menjadi lautan kembali? Di kutub selatan Mars masih terdapat air dalam keadaan membeku. Apabila simpanan es tersebut dicairkan, maka air akan kembali mengisi lautan Mars. Caranya dengan menggunakan satelit yang dibekali cermin yang terbuat dari bahan kaca PET beraluminium. Cermin tersebut dapat ditaruh di orbit Mars dan seperti kaca pembesar, dapat mengarahkan cahaya matahari untuk mencairkan es yang ada di kutub. Namun langkah itu tak mudah, sebab diameter cermin yang diperlukan sekitar 125 km!
Setelah masalah air beres, langkah selanjutnya adalah mempertebal atmosfer dan meningkatkan suhu Mars. Mars sangatlah dingin sebagai akibat atmosfer tipisnya. Suhu terpanas Mars tercatat hanya 22 derajat celcius, dan saat malam bisa turun drastis hingga minus 73 derajat celcius. Untuk meningkatkan suhu Mars dibutuhkan gas rumah kaca. Berbeda dengan di Bumi, pemanasan global justru merupakan hal yang menguntungkan di Mars.
Beruntung Mars memiliki cadangan CO2 beku di kutubnya sehingga apabila dicairkan, dapat mengisi atmosfer dengan gas rumah kaca. Tak hanya memanaskan planet. CO2 di atmosfer Mars juga dapat menaikkan tekanan udara planet tersebut. Tekanan udara alami Mars sangatlah rendah, yakni hanya mencapai 0,6 kilopascal, padahal manusia di Bumi terbiasa hidup dalam tekanan 101,3 kilopascal. Apabila dicairkan semua, CO2 di kutub dapat menaikkan tekanan hingga 30 kilopascal. Selanjutnya, tekanan udara dapat dinaikkan dengan bantuan gas2 seperti metana.
Gas rumah kaca lain yang bisa meningkatkan suhu Mars adalah amonia dan metana. Penggunaan amonia memiliki keuntungan lain, yakni mampu menghasilkan gas nitrogen yang penting untuk meniru komposisi atmosfer Bumi (mayoritas gas dalam atmosfer Bumi adalah nitrogen). Amonia dan metana dapat diperoleh dari planet lain dan satelit2nya, semisal dari Titan, satelit Saturnus. Cara “mudah” untuk memasukkan metana ke atmosfer jika kita malas mentransportnya dari planet lain dengan jarak jutaan kilometer adalah dengan menabrakkan asteroid atau komet yang kaya akan amonia ke Mars
Metana merupakan gas yang berguna banyak bagi proses terraforming. Metana dapat meningkatkan tekanan atmosfer, meningkatkan suhu planet, bahkan mampu menghasilkan air bila direaksikan dengan besi (III) oksida melalui proses berikut
CH4 + 4 Fe2O3 → CO2 + 2 H2O + 8 FeO
Besi (III) oksida sendiri sangatlah melimpah di tanah Mars, bahkan inilah yang memberikan warna merah bagi planet itu. Sumber energi bagi reaksi tersebut dapat diperoleh dari radiasi matahari. Produk dari reaksi tersebut berupa air dan CO2 yang sangat dibutuhkan oleh proses fotosintesis, apabila tanaman Bumi akan diperkenalkan di planet merah ini. Tumbuhan apa yang mampu hidup di Mars? Penelitian di German Aerospace Centre membuktikan bahwa lumut kerak, tumbuhan perintis di Bumi, mampu hidup bahkan berftosintesis di bawah kondisi yang dibuat semirip mungkin dengan Mars di Mars Simulation Laboratory
Apabila pemanasan global di Mars menggunakan CO2 dinilai terlalu lambat, maka gas2 rumah kaca berbasis flourine seperti CFC dapat digunakan. Gas2 ini merupakan gas rumah kaca yang ribuan kali lebih kuat ketimbang CO2 (walaupun CFC lebih dikenal karena kemampuannya merusak lapisan ozon). Salah satu cara yang disarankan adalah memuati roket dengan CFC lalu menabrakkannya ke permukaan Mars. Namun jumlah CFC yang dibutuhkan amatlah besar, yakni mencapai 39 juta metrik ton. Ini setara dengan 3 kali produksi CFC dunia selama 1972-1992 (setelah penggunaan AC dan kulkas ber-CFC dilarang). Jika jumlah itu terlalu mustahil untuk mencapai, maka solusinya adalah menambang mineral2 mengandung flour yang secara alami sudah ada di Mars, seperti CF3SCF3, CF3OCF2OCF3, CF3SCF2SCF3, CF3OCF2NFCF3, C12F27N
Cara lain untuk meningkatkan suhu Mars secara cepat adalah dengan memperkecil albedo atau tingkat kecerahan planet. Menurut teori fisika, benda cerah akan memantulkan panas, sedangkan benda gelap cenderung menyerap panas. Dengan membuat permukaan Mars lebih gelap, maka cahaya matahari akan lebih optimal diserap dan meningkatkan suhu planet. Menggelapkan permukaan Mars dapat dilakukan dengan menebarkan debu dari Phobos dan Deimos, dua bulan Mars. Selain itu, memperkenalkan bakteri, lumut kerak, dan alga juga akan memberi warna gelap pada planet
Cara lain yang lebih cepat, namun cukup gila, untuk menaikkan suhu Mars adalah dengan menabrakkan asteroid ke planet merah tersebut. Energi tumbukan akan menghasilkan panas yang selanjutnya akan menguapkan CO2 dan air. Asteroid juga mengandung amonia secara alami, sehingga bisa membantu proses terraforming selanjutnya
Hidrogen adalah gas yang cukup penting bagi terraforming sebab dapat diolah menjadi air. Hidrogen dapat diimpor dari planet lain seperti Jupiter dan Saturnus. Mereaksikan hidrogen dan besi (III) oksida dapat menghasilkan air melalui reaksi
H2 + Fe2O3 → H2O + 2FeO
Selain itu, mereaksikan hidrogen dengan CO2 melalui reaksi Sabatier dapat menghasilkan metana dan air
CO2 + 4 H2 → CH4 + 2 H2O
Tak hanya kuantitas, namun kualitas udara juga penting. Atmosfer alami Mars sangatlah miskin oksigen. Namun kita tak perlu mengekspor oksigen dari Bumi. Tanah Mars mengandung senyawa pernitrat dan perklorat yang melalui reaksi kimia dapat diurai menghasilkan oksigen. Elektrolisis juga dapat diterapkan untuk mengubah air di Mars menjadi hidrogen dan oksigen. Fitoplankton juga mampu mengubah CO2 di atmosfer Mars menjadi oksigen
Lalu bagaimana mengisi daratan kering di Mars menjadi lautan kembali? Di kutub selatan Mars masih terdapat air dalam keadaan membeku. Apabila simpanan es tersebut dicairkan, maka air akan kembali mengisi lautan Mars. Caranya dengan menggunakan satelit yang dibekali cermin yang terbuat dari bahan kaca PET beraluminium. Cermin tersebut dapat ditaruh di orbit Mars dan seperti kaca pembesar, dapat mengarahkan cahaya matahari untuk mencairkan es yang ada di kutub. Namun langkah itu tak mudah, sebab diameter cermin yang diperlukan sekitar 125 km!
Spoiler for :

Setelah masalah air beres, langkah selanjutnya adalah mempertebal atmosfer dan meningkatkan suhu Mars. Mars sangatlah dingin sebagai akibat atmosfer tipisnya. Suhu terpanas Mars tercatat hanya 22 derajat celcius, dan saat malam bisa turun drastis hingga minus 73 derajat celcius. Untuk meningkatkan suhu Mars dibutuhkan gas rumah kaca. Berbeda dengan di Bumi, pemanasan global justru merupakan hal yang menguntungkan di Mars.
Beruntung Mars memiliki cadangan CO2 beku di kutubnya sehingga apabila dicairkan, dapat mengisi atmosfer dengan gas rumah kaca. Tak hanya memanaskan planet. CO2 di atmosfer Mars juga dapat menaikkan tekanan udara planet tersebut. Tekanan udara alami Mars sangatlah rendah, yakni hanya mencapai 0,6 kilopascal, padahal manusia di Bumi terbiasa hidup dalam tekanan 101,3 kilopascal. Apabila dicairkan semua, CO2 di kutub dapat menaikkan tekanan hingga 30 kilopascal. Selanjutnya, tekanan udara dapat dinaikkan dengan bantuan gas2 seperti metana.
Spoiler for :

Gas rumah kaca lain yang bisa meningkatkan suhu Mars adalah amonia dan metana. Penggunaan amonia memiliki keuntungan lain, yakni mampu menghasilkan gas nitrogen yang penting untuk meniru komposisi atmosfer Bumi (mayoritas gas dalam atmosfer Bumi adalah nitrogen). Amonia dan metana dapat diperoleh dari planet lain dan satelit2nya, semisal dari Titan, satelit Saturnus. Cara “mudah” untuk memasukkan metana ke atmosfer jika kita malas mentransportnya dari planet lain dengan jarak jutaan kilometer adalah dengan menabrakkan asteroid atau komet yang kaya akan amonia ke Mars
Metana merupakan gas yang berguna banyak bagi proses terraforming. Metana dapat meningkatkan tekanan atmosfer, meningkatkan suhu planet, bahkan mampu menghasilkan air bila direaksikan dengan besi (III) oksida melalui proses berikut
CH4 + 4 Fe2O3 → CO2 + 2 H2O + 8 FeO
Besi (III) oksida sendiri sangatlah melimpah di tanah Mars, bahkan inilah yang memberikan warna merah bagi planet itu. Sumber energi bagi reaksi tersebut dapat diperoleh dari radiasi matahari. Produk dari reaksi tersebut berupa air dan CO2 yang sangat dibutuhkan oleh proses fotosintesis, apabila tanaman Bumi akan diperkenalkan di planet merah ini. Tumbuhan apa yang mampu hidup di Mars? Penelitian di German Aerospace Centre membuktikan bahwa lumut kerak, tumbuhan perintis di Bumi, mampu hidup bahkan berftosintesis di bawah kondisi yang dibuat semirip mungkin dengan Mars di Mars Simulation Laboratory
Apabila pemanasan global di Mars menggunakan CO2 dinilai terlalu lambat, maka gas2 rumah kaca berbasis flourine seperti CFC dapat digunakan. Gas2 ini merupakan gas rumah kaca yang ribuan kali lebih kuat ketimbang CO2 (walaupun CFC lebih dikenal karena kemampuannya merusak lapisan ozon). Salah satu cara yang disarankan adalah memuati roket dengan CFC lalu menabrakkannya ke permukaan Mars. Namun jumlah CFC yang dibutuhkan amatlah besar, yakni mencapai 39 juta metrik ton. Ini setara dengan 3 kali produksi CFC dunia selama 1972-1992 (setelah penggunaan AC dan kulkas ber-CFC dilarang). Jika jumlah itu terlalu mustahil untuk mencapai, maka solusinya adalah menambang mineral2 mengandung flour yang secara alami sudah ada di Mars, seperti CF3SCF3, CF3OCF2OCF3, CF3SCF2SCF3, CF3OCF2NFCF3, C12F27N
Cara lain untuk meningkatkan suhu Mars secara cepat adalah dengan memperkecil albedo atau tingkat kecerahan planet. Menurut teori fisika, benda cerah akan memantulkan panas, sedangkan benda gelap cenderung menyerap panas. Dengan membuat permukaan Mars lebih gelap, maka cahaya matahari akan lebih optimal diserap dan meningkatkan suhu planet. Menggelapkan permukaan Mars dapat dilakukan dengan menebarkan debu dari Phobos dan Deimos, dua bulan Mars. Selain itu, memperkenalkan bakteri, lumut kerak, dan alga juga akan memberi warna gelap pada planet
Cara lain yang lebih cepat, namun cukup gila, untuk menaikkan suhu Mars adalah dengan menabrakkan asteroid ke planet merah tersebut. Energi tumbukan akan menghasilkan panas yang selanjutnya akan menguapkan CO2 dan air. Asteroid juga mengandung amonia secara alami, sehingga bisa membantu proses terraforming selanjutnya
Hidrogen adalah gas yang cukup penting bagi terraforming sebab dapat diolah menjadi air. Hidrogen dapat diimpor dari planet lain seperti Jupiter dan Saturnus. Mereaksikan hidrogen dan besi (III) oksida dapat menghasilkan air melalui reaksi
H2 + Fe2O3 → H2O + 2FeO
Selain itu, mereaksikan hidrogen dengan CO2 melalui reaksi Sabatier dapat menghasilkan metana dan air
CO2 + 4 H2 → CH4 + 2 H2O
Tak hanya kuantitas, namun kualitas udara juga penting. Atmosfer alami Mars sangatlah miskin oksigen. Namun kita tak perlu mengekspor oksigen dari Bumi. Tanah Mars mengandung senyawa pernitrat dan perklorat yang melalui reaksi kimia dapat diurai menghasilkan oksigen. Elektrolisis juga dapat diterapkan untuk mengubah air di Mars menjadi hidrogen dan oksigen. Fitoplankton juga mampu mengubah CO2 di atmosfer Mars menjadi oksigen
Quote:
Berikut ini wajah permukaan Mars setelah di-terraforming

Spoiler for :


Quote:
Quote:
2. CERES
Spoiler for :

Ceres dulu dikenal sebagai asteroid, namun kini naik tingkat menjadi planet kerdil setara Pluto. Usaha terraforming Ceres takkan seambisius Mars sebab Ceres hanya akan dijadikan pangkalan luar angkasa yang akan menghubungkan Bumi dengan planet2 di luar sabuk asteroid, seperti Jupiter dan Saturnus. Bulan2 di Saturnus dan Jupiter kaya akan hidrogen, amonia, dan metana yang selanjutnya dapat diimpor untuk usaha terraforming Mars dan Venus. Asteroid2 juga dapat ditambang untuk keperluan mineral
Ceres memiliki cadangan air berupa es di permukaannya sehingga bisa menyokong kehidupan. Selain itu, gaya gravitasi Ceres yang kuat serta letaknya yang strategis membuatnya menjadi kandidat yang cocok untuk kolonisasi manusia. Namun ada masalah yang menghadang rencana kolonisasi di Ceres. Letaknya di sabuk asteroid membuatnya rentan terhantam atau bertabrakan dengan ribuan asteroid. Sehingga diperlukan pangkalan militer dengan persenjataan nuklir canggih untuk melindungi koloni Ceres.
Quote:
Quote:
3. VENUS
Spoiler for :

Ide untuk terraforming Venus sudah diajukan oleh Carl Sagan sejak tahun 1961. Masalah yang dihadapi dalam usaha tersebut akan berkebalikan dengan Mars. Apabila Mars memiliki tantangan berupa suhu yang rendah dan atmosfer yang tipis, maka Venus justru memiliki suhu yang terlalu tinggi dan atmosfer yang terlalu tebal
Venus bukanlah planet yang bersahabat dengan manusia. Suhu permukaan Venus mencapai 450 derajat celcius. Suhu setinggi itu sudah cukup untuk melelehkan logam. lokasinya yang dekat dengan Matahari membuatnya menerima dua kali jumlah panas Matahari ketimbang yang diterima Bumi. Tak hanya itu, atmosfernya yang tebal mengandung CO2 dalam jumlah luar biasa yang berperan sebagai gas rumah kaca, memerangkap panas matahari dan menaikkan suhu planet
Spoiler for :

Cara yang dapat digunakan untuk mendinginkan Venus adalah dengan “memayunginya” dengan “solar shade” yang juga berperan ganda sebagai panel solar untuk menghasilkan energi listrik. Usaha ini bakalan mati2an, sebab ukuran “solar shade” yang dibutuhkan adalah empat kali diameter Venus sendiri. Bisa dibayangkan akan sangat sulit bagi penduduk Bumi untuk memproduksinya, apalagi mengirimkannya ke Venus. Namun untungnya, bahan “solar shade” yang diproposalkan adalah nanotube karbon dan graphene yang dapat diproduksi di planet Venus langsung dengan bahan CO2 dari atmosfernya. Material dan energi yang dihasilkan ini juga dapat dimanfaatkan di Bumi sehingga menjadi nilai komersil bagi planet ini.
Spoiler for :

Lalu bagaimana cara mengurangi kandungan CO2 yang berlebihan di atmosfer Venus? Salah satu ide cemerlang adalah membombardir Venus dengan gas hidrogen yang selanjutnya akan bereaksi dengan CO2 menghasilkan grafit (bernilai ekonomi) dan air (bermanfaat bagi kehidupan) menurut reaksi Bosch.
CO2 + 2H → C + 2H2O
Jumlah gas hidrogen yang dibutuhkan sangat besar, sehingga dapat diambil dari planet2 gas raksasa (Jupiter, Saturnus, Uranus, dan Neptunus) ataupun satelit2 mereka. Untuk reaksi ini juga diperlukan senyawa besi sebagai katalis yang dapat diperoleh dari Mars, Merkuri, asteroid, hingga Bulan.
Membombardir Venus dengan magnesium dan kalsium juga dapat mengurangi kandungan CO2 atmosfer dengan mengubahnya menjadi kalsium karbonat dan magnesium karbonat. Untunglah magnesium dan kalsium oksida secara alami dapat ditambang di permukaan planet.
CO2 yang ingin dibuang dari Venus juga sebenarnya dapat dimanfaatkan dengan cara didinginkan menjadi es kering lalu dikirimkan ke Mars untuk men-terarforming planet tersebut (ingat Mars perlu banyak CO2 untuk memanaskan planet tersebut).
Namun masalah terberat yang akan dihadapi apabila manusia benar2 ingin menguasai Venus adalah masa rotasinya yang sangat lambat. Satu hari Venus setara dengan 243 hari di Bumi, hampir sama dengan masa revolusinya (1 tahun Venus = 224,7 hari Bumi). Dengan kata lain, siang hari di Venus mencapai 116 hari (hampir 4 bulan) lamanya, sama dengan panjang malamnya. Tak hanya manusia yang akan sulit beradaptasi dengan kondisi ekstrim ini, namun juga hewan apalagi tumbuhan. Cara gila untuk mempercepat rotasi Venus adalah dengan melewatkan asteroid atau komet dengan diamater sekitar 100 km dan membiarkan gaya gravitasinya bekerja. Darimana kita dapat asteroidnya dan bagaimana kita bisa “menyopirinya” melewati Venus biarkan menjadi imajinasi kita. Berikut ini adalah peta permukaan Venus setelah di-terraforming. Benua terbesar di Venus akan diberi nama “Aphrodite”, nama Yunani bagi dewi cinta tersebut.
Quote:
Wajah Venus Setelah Di Terraforming

Spoiler for :


Quote:
Quote:
4. MERKURIUS
Spoiler for :

Merkuri memiliki berbagai keuntungan ketimbang planet2 lainnya. Pertama planet ini memiliki medan magnet yang bisa melindunginya dari radiasi mematikan matahari. Walaupun sangat dekat dengan Matahari dengan suhu mencapai 427 derajat celcius, namun wilayah kutub Merkuri memiliki suhu dingin, yakni nol derajat celcius. Ini bisa menjadi lokasi menjanjikan untuk kolonisasi manusia.
Jikapun manusia berhasil menduduki Merkuri, tujuannya bukanlah untuk terraforming, melainkan sekedar kolonisasi saja. Merkuri bisa dibilang sebagai planet paling bernilai ekonomi tinggi. Menjadi planet terdekat dengan Matahari membuat planet ini bisa menghasilkan energi sebesar 6-15 kilowatt per meter persegi! Manusia bisa menangkap energi itu dengan menggunakan panel surya kemudian memanfaatkannya untuk perjalanan antarbintang.
Selain itu, Merkuri juga kaya akan helium-3, bahan tambang yang diperlukan untuk reaksi fusi dingin, sebuah sumber energi alternatif yang kelak bisa menggantikan energi nuklir. Merkuri juga kaya akan besi dan magnesium silikat yang dapat dimanfaatkan sebagai bahan untuk terraforming Venus. Satu-satunya masalah besar yang akan dihadapi di Merkuri adalah gaya gravitasi Matahari yang masih sangat besar di sana. Sehingga apabila digunakan sebagai pangkalan luar angkasa, akan dibutuhkan energi yang sangat besar untuk meninggalkan planet tersebut.
LANJUT KE BAWAH YA GAN

Diubah oleh wahyudit 12-07-2015 12:33
0
126.5K
Kutip
1.1K
Balasan


Komentar yang asik ya
Urutan
Terbaru
Terlama


Komentar yang asik ya
Komunitas Pilihan